US 2005/0005261 Al

interface. As long as each implementation accesses the other
implementations through the meta-implementation layer,
different implementations can be mixed together even if they
are on different platforms, written in different languages, and
using different implementation paradigms (like relational
database structures versus object-oriented structures versus
structured programming).

[0198] An accessor of the present invention provides
access to an implementation in a way that is consistent with
the descriptor of that implementation. There is always a
one-to-one mapping between a descriptor and an accessor.
There is not necessarily a one-to-one mapping between an
accessor and an implementation. The accessors of the
present invention are interfaces an accessor must implement
to participate in the meta-implementation. Different meta-
implementations may implement the same accessor inter-
face differently. Accessors have a one-to-one association
relationship with descriptors for which this accessor pro-
vides access to an implementation. Accessors have a one-
to-many association relationship with implementations that
corresponds to the features described in the descriptor. The
accessor may use parts of one or several different imple-
mentations in order to provide access in a manner consistent
with the descriptor. An accessor has a one-to-one association
relationship with a name that is the name of the accessor. An
accessor has a zero-to-one association relationship with a
description that provides details about the hint for the correct
use of this accessor and details about the implementation. A
description is useful for human users and automated docu-
mentation. This description is different from the description
on the metamodel object. That description provides details
about how the model is designed and why; this description
provides details on use of the implementation (as used
through the accessor). An accessor may produce signals
related to events occurring in the accessor implementation.
Listeners interested in receiving these signals may use
registerImplementationListener(listener) to register interest.
Listeners no longer wishing to receive these signals may use
deregisterImplementationListener(listener) to stop receiving
signals.

[0199] An accessor of the present invention provides
access to an implementation. Use of the implementation
depends of the submodel of accessor. A meta-implementa-
tion change event is fired whenever an attribute value is
added, changed or removed from the accessor.

[0200] A failure descriptor in the metamodel layer
describes the failures an operation throws, not the failure
itself. The failure is modeled using a metamodel. To access
a failure, use the metamodel accessor for the failure. Oth-
erwise, the tool using the accessor that generates the failure
must handle these failures.

[0201] Constraints are not accessed via an accessor to an
implementation. Instead the implementation provides the
constraints or a constraint implementation is added to the
accessor making use of the constraint. The accessor imposes
the restriction, even if it is not imposed by the true imple-
mentation.

[0202] A feature accessor of the present invention is an
accessor that is part of a larger accessor. A feature accessor
has a one-to-one association relationship with a feature
descriptor for which this accessor provides access to an
implementation. A feature accessor has a one-to-many asso-

Jan. 6, 2005

ciation relationship with an implementation that corresponds
to the features described in the descriptor. A feature accessor
may use parts of one or several different implementations in
order to provide access in a manner consistent with the
descriptor. A feature accessor has a zero-to-one association
relationship with a parent accessor that is a reference to the
accessor containing the feature accessor. A feature accessor
has a zero-to-many association relationship with an access
constraint implementation that enforces restrictions related
to security access.

[0203] A feature accessor provides access to an imple-
mentation. Use of the implementation depends of the sub-
model of feature accessor. A feature accessor adds no
additional events.

[0204] A datatype accessor of the present invention is an
accessor that provides access to data. Attribute Accessor and
Parameter Accessor inherit from datatype accessor. A
datatype accessor has one-to-one association relationship
with a datatype descriptor that is the attribute descriptor for
which this accessor provides access to an implementation. A
datatype accessor has one-to-one association relationship
with a datatype implementation that is the attribute imple-
mentation that this accessor uses to perform the actual
storage and retrieval of values. A datatype accessor has
zero-to-many association relationship with occurrence con-
straints that are each an implementation of a constraint to
restrict the number of values assigned to the attribute
implementation. A datatype accessor has zero-to-many asso-
ciation relationship with value constraints that are an imple-
mentation of a constraint to restrict the values allowed to be
held by an attribute implementation. A datatype accessor has
zero-to-many association relationship with access con-
straints that are each implementation of a constraint to
restrict the access to values held by the attribute implemen-
tation.

[0205] An instance of a datatype accessor has the follow-
ing may include the following operations a getValue() that
returns the current value(s) after checking access con-
straints, a setValue(Instance) that removes any previous
value and sets it to the new value after checking all con-
straints, an addValue(Instance) that adds the instance given
to the current values after checking all constraints, a
removeValue(Instance) that removes the given instance
from the current values after checking to see if the value is
being held and checking access and occurrence constraints,
and clearValues() that remove all values after checking
access and occurrence constraints.

[0206] A datatype accessor adds no additional events.

[0207] An attribute accessor of the present invention is a
feature accessor that provides access to an attribute of a
model implementation. Unlike an attribute descriptor, an
attribute accessor does not aggregate a datatype accessor.
The datatype is accessed directly through the attribute
implementation, not a datatype accessor. Attribute accessors
allow a value to be set and retrieved. If static, the value of
the attribute is shared by all instances. Otherwise the value
is assigned only to a single instance.

[0208] An attribute accessor has a one-to-one association
relationship with an attribute descriptor that is the attribute
descriptor for which this accessor provides access to an
implementation. An attribute accessor has a one-to-one

